Вы здесь
Разработка ученых Пермского Политеха упростит создание линейных двигателей для конвейеров и роботов-манипуляторов
Линейные двигатели приводят в движение электрический транспорт, лифты высотных зданий, металлорежущее оборудование, транспортировочные конвейерные ленты, сваебойные молоты и даже бионические протезы. Их преимущество в том, что для перемещения по прямой линии не нужны дополнительные механизмы – шестерни, рейки или цепи. Но иногда при обработке деталей сложной формы, выполнении некоторых манипуляций в робототехнике, перекосах и неровностях движения необходимо перемещение по криволинейной траектории. Не каждая конструкция агрегата способна сделать это эффективно и без лишних колебаний. Ученые Пермского Политеха проанализировали три вида моделей линейного двигателя и выяснили, какой из них лучше всего справляется с поставленной задачей.
Статья опубликована в журнале «Электротехника», № 11, 2024. Исследование выполнено в рамках программы стратегического академического лидерства «Приоритет 2030».
Большинство традиционных двигателей основаны на преобразовании электрической энергии в процессе вращения подвижного поршня вокруг своей оси. Для изменения их скорости, силы и других параметров необходимо использовать механические передачи – зубчатые шестеренки, рейки и цепи. Это усложняет и утяжеляет конструкцию.
В линейных двигателях подвижная часть перемещается вдоль оси, то есть не вращается. Благодаря этому они преобразуют энергию непосредственно в движение по прямой без дополнительных механических передач. Это повышает надежность и снижает износ составляющих. При этом бывают ситуации, когда подвижная часть должна идти по искривленной линии или дуге, как это происходит, например, при обработке деталей сложной формы на станке или при выполнении действий роботизированной рукой.
Для таких случаев в некоторых линейных двигателях предусмотрен гибкий вторичный элемент – подвижный механизм, который может изгибаться или деформироваться в некоторых пределах. Сложность в том, что не каждая такая конструкция качественно справляется с нестандартной траекторией.
Ученые Пермского Политеха сравнили несколько вариантов линейного двигателя и выявили самый перспективный гибкий вторичный элемент. Анализ проводили путем создания в специальной программе двумерных моделей. За основу выбрали линейный четырехполюсный малогабаритный двигатель – он имеет небольшие размеры и широко применяется в механизмах, где требуется компактность, простота и надежность – в насосах, конвейерах и роботах-манипуляторах. Изучаемый элемент состоит из силикона, который позволяет ему изгибаться, и магнитных элементов – они взаимодействуют с магнитным полем статора, вызывая движение.
– Мы рассмотрели три варианта конструкции этого механизма. В первом – на подвижной части внутри силикона размещаются кольца из магнитомягкой стали, которая проводит магнитное поле. Взаимодействие этого поля и тока создает силу, которая перемещает подвижную часть в линейном двигателе. Вторым вариантом стало применение силикона, смешанного с магнитомягкой стружкой. Третий и наиболее простой вариант – удаление 1/3 материала вокруг шарнира, чтобы обеспечить большую гибкость, – комментирует Александр Плюснин, аспирант кафедры «Электротехника и электромеханика» ПНИПУ.
– Мы сравнивали модели по одному из главных критериев – тяговому усилию. Этот параметр показывает силу, которую двигатель создает для перемещения объекта. В программе моделирования мы построили графики для каждой конструкции и выявили средний показатель. Результаты показали, что наиболее эффективен вариант с использованием магнитомягких колец. Такой двигатель развивает наибольшее тяговое усилие – 4,38 Н против 3,58-3,63 Н. При этом он испытывает меньше колебаний, а значит сохраняет стабильность и плавность работы, – объясняет Денис Опарин, старший преподаватель кафедры «Электротехника и электромеханика» ПНИПУ.
Исследование ученых Пермского Политеха выявило наиболее перспективный вариант конструкции гибкого вторичного элемента для линейного двигателя, который способен эффективно работать на искривленных траекториях. Использование магнитомягких колец обеспечивает наибольшее тяговое усилие, меньшие колебания и, следовательно, более стабильную и эффективную работу. Разработка станет оптимальным решением для предприятий, где в производстве задействованы станки для обработки деталей, конвейерные ленты и роботы-манипуляторы.